Coverage for tests/testCosmology.py : 7%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
lsst.utils.tests.init()
self.speedOfLight = 2.9979e5 # in km/sec
del self.speedOfLight
""" Test the evolution of H and Omega_i as a function of redshift for flat Lambda CDM models """ H0 = 50.0 for Om0 in np.arange(start=0.1, stop=0.91, step=0.4): universe = CosmologyObject(H0=H0, Om0=Om0)
Og0 = universe.OmegaPhotons(redshift=0.0) Onu0 = universe.OmegaNeutrinos(redshift=0.0)
self.assertAlmostEqual(universe.OmegaMatter(redshift=0.0), Om0, 10) self.assertAlmostEqual(1.0 - Om0 - universe.OmegaDarkEnergy(redshift=0.0), Og0+Onu0, 6) self.assertAlmostEqual(universe.H(redshift=0.0), H0, 10) self.assertEqual(universe.OmegaCurvature(), 0.0)
Om0 = universe.OmegaMatter(redshift=0.0)
for zz in np.arange(start=0.0, stop=4.1, step=2.0):
Hcontrol, OmControl, OdeControl, OgControl, OnuControl, \ OkControl, = cosmologicalOmega(zz, H0, Om0, Og0=Og0, Onu0=Onu0)
self.assertAlmostEqual(OmControl, universe.OmegaMatter(redshift=zz), 6) self.assertAlmostEqual(OdeControl, universe.OmegaDarkEnergy(redshift=zz), 6) self.assertAlmostEqual(OgControl, universe.OmegaPhotons(redshift=zz), 6) self.assertAlmostEqual(OnuControl, universe.OmegaNeutrinos(redshift=zz), 6) self.assertAlmostEqual(Hcontrol, universe.H(redshift=zz), 6)
del universe
""" Test the evolution of H and Omega_i as a function of redshift for flat models with w = w0 + wa * z / (1 + z) """
H0 = 96.0 for Om0 in np.arange(start=0.1, stop=0.95, step=0.4): for w0 in np.arange(start=-1.1, stop=-0.89, step=0.2): for wa in np.arange(start=-0.1, stop=0.11, step=0.2):
universe = CosmologyObject(H0=H0, Om0=Om0, w0=w0, wa=wa)
Og0 = universe.OmegaPhotons(redshift=0.0) Onu0 = universe.OmegaNeutrinos(redshift=0.0)
self.assertAlmostEqual(universe.OmegaMatter(redshift=0.0), Om0, 10) self.assertAlmostEqual(1.0 - Om0 - universe.OmegaDarkEnergy(redshift=0.0), Og0+Onu0, 6) self.assertAlmostEqual(universe.H(redshift=0.0), H0, 10) self.assertEqual(universe.OmegaCurvature(), 0.0)
Om0 = universe.OmegaMatter(redshift=0.0)
for zz in np.arange(start=0.0, stop=4.1, step=2.0):
wControl = w0 + wa*(1.0 - 1.0/(1.0+zz)) self.assertAlmostEqual(wControl, universe.w(redshift=zz), 6)
Hcontrol, OmControl, OdeControl, OgControl, OnuControl, \ OkControl = cosmologicalOmega(zz, H0, Om0, Og0=Og0, Onu0=Onu0, w0=w0, wa=wa)
self.assertAlmostEqual(OmControl, universe.OmegaMatter(redshift=zz), 6) self.assertAlmostEqual(OdeControl, universe.OmegaDarkEnergy(redshift=zz), 6) self.assertAlmostEqual(OgControl, universe.OmegaPhotons(redshift=zz), 6) self.assertAlmostEqual(OnuControl, universe.OmegaNeutrinos(redshift=zz), 6) self.assertAlmostEqual(Hcontrol, universe.H(redshift=zz), 6)
del universe
""" Test the evolution of H and Omega_i as a function of redshift for flat models with constant w """
H0 = 96.0 for Om0 in np.arange(start=0.1, stop=0.95, step=0.4): for w0 in np.arange(start=-1.5, stop=-0.49, step=1.0):
universe = CosmologyObject(H0=H0, Om0=Om0, w0=w0)
Og0 = universe.OmegaPhotons(redshift=0.0) Onu0 = universe.OmegaNeutrinos(redshift=0.0)
self.assertAlmostEqual(universe.OmegaMatter(redshift=0.0), Om0, 10) self.assertAlmostEqual(1.0 - Om0 - universe.OmegaDarkEnergy(redshift=0.0), Og0+Onu0, 6) self.assertAlmostEqual(universe.H(redshift=0.0), H0, 10) self.assertEqual(universe.OmegaCurvature(), 0.0)
Om0 = universe.OmegaMatter(redshift=0.0)
for zz in np.arange(start=0.0, stop=4.1, step=2.0):
self.assertAlmostEqual(w0, universe.w(redshift=zz), 6)
Hcontrol, OmControl, OdeControl, OgControl, OnuControl, \ OkControl = cosmologicalOmega(zz, H0, Om0, Og0=Og0, Onu0=Onu0, w0=w0, wa=0.0)
self.assertAlmostEqual(OmControl, universe.OmegaMatter(redshift=zz), 6) self.assertAlmostEqual(OdeControl, universe.OmegaDarkEnergy(redshift=zz), 6) self.assertAlmostEqual(OgControl, universe.OmegaPhotons(redshift=zz), 6) self.assertAlmostEqual(OnuControl, universe.OmegaNeutrinos(redshift=zz), 6) self.assertAlmostEqual(Hcontrol, universe.H(redshift=zz), 6)
del universe
""" Test the evolution of H and Omega_i as a function of redshift for non-flat Lambda CDM models """ w0 = -1.0 wa = 0.0 H0 = 77.0
for Om0 in np.arange(start=0.15, stop=0.96, step=0.4): for Ok0 in np.arange(start=-0.1, stop=0.11, step=0.2):
universe = CosmologyObject(H0=H0, Om0=Om0, Ok0=Ok0, w0=w0, wa=wa)
Og0 = universe.OmegaPhotons(redshift=0.0) Onu0 = universe.OmegaNeutrinos(redshift=0.0)
self.assertAlmostEqual(universe.OmegaMatter(redshift=0.0), Om0, 10) self.assertAlmostEqual(universe.OmegaCurvature(redshift=0.0), Ok0, 10) self.assertAlmostEqual(1.0 - Ok0 - Om0 - universe.OmegaDarkEnergy(redshift=0.0), Og0+Onu0, 6) self.assertAlmostEqual(universe.H(redshift=0.0), H0, 10)
Om0 = universe.OmegaMatter(redshift=0.0) Ode0 = universe.OmegaDarkEnergy(redshift=0.0) Ok0 = universe.OmegaCurvature(redshift=0.0)
for zz in np.arange(start=0.0, stop=4.0, step=2.0):
Hcontrol, OmControl, OdeControl, OgControl, OnuControl, \ OkControl = cosmologicalOmega(zz, H0, Om0, Og0=Og0, Onu0=Onu0, Ode0=Ode0)
self.assertAlmostEqual(OmControl, universe.OmegaMatter(redshift=zz), 6) self.assertAlmostEqual(OdeControl, universe.OmegaDarkEnergy(redshift=zz), 6) self.assertAlmostEqual(OgControl, universe.OmegaPhotons(redshift=zz), 6) self.assertAlmostEqual(OnuControl, universe.OmegaNeutrinos(redshift=zz), 6) self.assertAlmostEqual(OkControl, universe.OmegaCurvature(redshift=zz), 6) self.assertAlmostEqual(Hcontrol, universe.H(redshift=zz), 6)
del universe
""" Test the evolution of H and Omega_i as a function of redshift for non-flat models with w = w0 + wa * z / (1+z) """
H0 = 60.0
for Om0 in np.arange(start=0.15, stop=0.76, step=0.3): for Ok0 in np.arange(start=-0.1, stop=0.11, step=0.2): for w0 in np.arange(start=-1.1, stop=-0.89, step=0.2): for wa in np.arange(start=-0.1, stop=0.15, step=0.2):
universe = CosmologyObject(H0=H0, Om0=Om0, Ok0=Ok0, w0=w0, wa=wa)
Og0 = universe.OmegaPhotons(redshift=0.0) Onu0 = universe.OmegaNeutrinos(redshift=0.0)
self.assertAlmostEqual(universe.OmegaMatter(redshift=0.0), Om0, 10) self.assertAlmostEqual(Ok0, universe.OmegaCurvature(redshift=0.0), 10) self.assertAlmostEqual(1.0 - Om0 - Ok0 - universe.OmegaDarkEnergy(redshift=0.0), Og0 + Onu0, 10) self.assertAlmostEqual(universe.H(redshift=0.0), H0, 10)
Om0 = universe.OmegaMatter(redshift=0.0) Ode0 = universe.OmegaDarkEnergy(redshift=0.0)
for zz in np.arange(start=0.0, stop=4.0, step=2.0):
wControl = w0 + wa*(1.0 - 1.0/(1.0+zz)) self.assertAlmostEqual(wControl, universe.w(redshift=zz), 6)
Hcontrol, OmControl, OdeControl, OgControl, OnuControl, \ OkControl = cosmologicalOmega(zz, H0, Om0, Og0=Og0, Onu0=Onu0, w0=w0, wa=wa, Ode0=Ode0)
self.assertAlmostEqual(OmControl, universe.OmegaMatter(redshift=zz), 6) self.assertAlmostEqual(OdeControl, universe.OmegaDarkEnergy(redshift=zz), 6) self.assertAlmostEqual(OgControl, universe.OmegaPhotons(redshift=zz), 6) self.assertAlmostEqual(OnuControl, universe.OmegaNeutrinos(redshift=zz), 6) self.assertAlmostEqual(OkControl, universe.OmegaCurvature(redshift=zz), 6) self.assertAlmostEqual(Hcontrol, universe.H(redshift=zz), 6)
del universe
""" Test the evolution of H and Omega_i as a function of redshift for non-flat models with constant w """
H0 = 60.0
for Om0 in np.arange(start=0.15, stop=0.76, step=0.3): for Ok0 in np.arange(start=0.1, stop=0.11, step=0.2): for w0 in np.arange(start=-1.1, stop = -0.89, step=0.2):
universe = CosmologyObject(H0=H0, Om0=Om0, Ok0=Ok0, w0=w0)
Og0 = universe.OmegaPhotons(redshift=0.0) Onu0 = universe.OmegaNeutrinos(redshift=0.0)
self.assertAlmostEqual(universe.OmegaMatter(redshift=0.0), Om0, 10) self.assertAlmostEqual(Ok0, universe.OmegaCurvature(redshift=0.0), 10) self.assertAlmostEqual(1.0 - Om0 - Ok0 - universe.OmegaDarkEnergy(redshift=0.0), Og0+Onu0, 10)
self.assertAlmostEqual(universe.H(redshift=0.0), H0, 10)
Om0 = universe.OmegaMatter(redshift=0.0) Ode0 = universe.OmegaDarkEnergy(redshift=0.0)
for zz in np.arange(start=0.0, stop=4.0, step=2.0):
self.assertAlmostEqual(w0, universe.w(redshift=zz), 6)
Hcontrol, OmControl, OdeControl, OgControl, OnuControl, \ OkControl = cosmologicalOmega(zz, H0, Om0, Og0=Og0, Onu0=Onu0, w0=w0, wa=0.0, Ode0=Ode0)
self.assertAlmostEqual(OmControl, universe.OmegaMatter(redshift=zz), 6) self.assertAlmostEqual(OdeControl, universe.OmegaDarkEnergy(redshift=zz), 6) self.assertAlmostEqual(OgControl, universe.OmegaPhotons(redshift=zz), 6) self.assertAlmostEqual(OnuControl, universe.OmegaNeutrinos(redshift=zz), 6) self.assertAlmostEqual(OkControl, universe.OmegaCurvature(redshift=zz), 6) self.assertAlmostEqual(Hcontrol, universe.H(redshift=zz), 6)
del universe
""" Test comoving distance calculation
Note: this is comoving distance defined as X in the FRW metric
ds^2 = -c^2 dt^2 + a^2 dX^2 + sin^2(X) dOmega^2
where spatial curvature is accounted for in the sin function """
H0 = 73.0 for Om0 in np.arange(start=0.15, stop=0.56, step=0.2): for Ok0 in np.arange(start=-0.1, stop=0.11, step=0.2): for w0 in np.arange(start=-1.1, stop=-0.85, step=0.2): for wa in np.arange(start=-0.1, stop=0.115, step=0.02):
universe = CosmologyObject(H0=H0, Om0=Om0, Ok0=Ok0, w0=w0, wa=wa) Og0 = universe.OmegaPhotons() Onu0 = universe.OmegaNeutrinos() Ode0 = universe.OmegaDarkEnergy()
for zz in np.arange(start=0.1, stop=4.2, step=2.0): comovingControl = universe.comovingDistance(redshift=zz)
comovingTest = \ self.speedOfLight*scipy.integrate.quad(comovingDistanceIntegrand, 0.0, zz, args=(H0, Om0, Ode0, Og0, Onu0, w0, wa))[0]
self.assertAlmostEqual(comovingControl/comovingTest, 1.0, 4)
""" Test the calculation of the luminosity distance """
H0 = 73.0
for Om0 in np.arange(start=0.15, stop=0.56, step=0.2): for Ok0 in np.arange(start=-0.1, stop=0.11, step=0.2): for w0 in np.arange(start=-1.1, stop=-0.85, step=0.2): for wa in np.arange(start=-0.1, stop=0.11, step=0.2):
universe = CosmologyObject(H0=H0, Om0=Om0, Ok0=Ok0, w0=w0, wa=wa)
sqrtkCurvature = \ np.sqrt(np.abs(universe.OmegaCurvature()))*universe.H()/self.speedOfLight
Og0 = universe.OmegaPhotons() Onu0 = universe.OmegaNeutrinos() Ode0 = universe.OmegaDarkEnergy()
for zz in np.arange(start=0.1, stop=4.2, step=2.0): luminosityControl = universe.luminosityDistance(redshift=zz)
comovingDistance = \ self.speedOfLight*scipy.integrate.quad(comovingDistanceIntegrand, 0.0, zz, args=(H0, Om0, Ode0, Og0, Onu0, w0, wa))[0]
if universe.OmegaCurvature() < 0.0: nn = sqrtkCurvature*comovingDistance nn = np.sin(nn) luminosityTest = (1.0+zz)*nn/sqrtkCurvature elif universe.OmegaCurvature() > 0.0: nn = sqrtkCurvature*comovingDistance nn = np.sinh(nn) luminosityTest = (1.0+zz)*nn/sqrtkCurvature else: luminosityTest = (1.0+zz)*comovingDistance self.assertAlmostEqual(luminosityControl/luminosityTest, 1.0, 4)
""" Test the calculation of the angular diameter distance """
H0 = 56.0 universe = CosmologyObject() for Om0 in np.arange(start=0.15, stop=0.56, step=0.2): for Ok0 in np.arange(start=-0.1, stop=0.11, step=0.2): for w0 in np.arange(start=-1.1, stop=-0.85, step=0.2): for wa in np.arange(start=-0.1, stop=0.11, step=0.2):
universe = CosmologyObject(H0=H0, Om0=Om0, Ok0=Ok0, w0=w0, wa=wa)
sqrtkCurvature = \ np.sqrt(np.abs(universe.OmegaCurvature()))*universe.H()/self.speedOfLight
Og0 = universe.OmegaPhotons() Onu0 = universe.OmegaNeutrinos() Ode0 = universe.OmegaDarkEnergy()
for zz in np.arange(start=0.1, stop=4.2, step=2.0): angularControl = universe.angularDiameterDistance(redshift=zz)
comovingDistance = \ self.speedOfLight*scipy.integrate.quad(comovingDistanceIntegrand, 0.0, zz, args=(H0, Om0, Ode0, Og0, Onu0, w0, wa))[0]
if universe.OmegaCurvature() < 0.0: nn = sqrtkCurvature*comovingDistance nn = np.sin(nn) angularTest = nn/sqrtkCurvature elif universe.OmegaCurvature() > 0.0: nn = sqrtkCurvature*comovingDistance nn = np.sinh(nn) angularTest = nn/sqrtkCurvature else: angularTest = comovingDistance angularTest /= (1.0+zz) self.assertAlmostEqual(angularControl/angularTest, 1.0, 4)
""" Test the calculation of the distance modulus out to a certain redshift """ H0 = 73.0
universe = CosmologyObject() for Om0 in np.arange(start=0.15, stop=0.56, step=0.2): for Ok0 in np.arange(start=-0.1, stop=0.11, step=0.2): for w0 in np.arange(start=-1.1, stop=-0.85, step=0.2): for wa in np.arange(start=-0.1, stop=0.11, step=0.2):
universe = CosmologyObject(H0=H0, Om0=Om0, Ok0=Ok0, w0=w0, wa=wa)
sqrtkCurvature = \ np.sqrt(np.abs(universe.OmegaCurvature()))*universe.H()/self.speedOfLight
Og0 = universe.OmegaPhotons() Onu0 = universe.OmegaNeutrinos() Ode0 = universe.OmegaDarkEnergy()
for zz in np.arange(start=0.1, stop=4.2, step=2.0): modulusControl = universe.distanceModulus(redshift=zz)
comovingDistance = \ self.speedOfLight*scipy.integrate.quad(comovingDistanceIntegrand, 0.0, zz, args=(H0, Om0, Ode0, Og0, Onu0, w0, wa))[0]
if universe.OmegaCurvature() < 0.0: nn = sqrtkCurvature*comovingDistance nn = np.sin(nn) luminosityDistance = (1.0+zz)*nn/sqrtkCurvature elif universe.OmegaCurvature() > 0.0: nn = sqrtkCurvature*comovingDistance nn = np.sinh(nn) luminosityDistance = (1.0+zz)*nn/sqrtkCurvature else: luminosityDistance = (1.0+zz)*comovingDistance
modulusTest = 5.0*np.log10(luminosityDistance) + 25.0 self.assertAlmostEqual(modulusControl/modulusTest, 1.0, 4)
""" Test to make sure that the distance modulus is set to zero if the distance modulus method returns a negative number """ universe = CosmologyObject() ztest = [0.0, 1.0, 2.0, 0.0, 3.0] mm = universe.distanceModulus(redshift=ztest) self.assertEqual(mm[0], 0.0) self.assertEqual(mm[3], 0.0) self.assertEqual(mm[1], 5.0*np.log10(universe.luminosityDistance(ztest[1])) + 25.0) self.assertEqual(mm[2], 5.0*np.log10(universe.luminosityDistance(ztest[2])) + 25.0) self.assertEqual(mm[4], 5.0*np.log10(universe.luminosityDistance(ztest[4])) + 25.0)
""" Test to make sure that getCurrent returns the activeCosmology """
for Om0 in np.arange(start=0.2, stop=0.5, step=0.29): for Ok0 in np.arange(start=-0.2, stop=0.2, step=0.39): for w0 in np.arange(start=-1.2, stop=-0.7, step=0.49): for wa in np.arange(start=-0.2, stop=0.2, step=0.39): universe = CosmologyObject(Om0=Om0, Ok0=Ok0, w0=w0, wa=wa) testUniverse = universe.getCurrent()
for zz in np.arange(start=1.0, stop=2.1, step=1.0): self.assertEqual(universe.OmegaMatter(redshift=zz), testUniverse.Om(zz)) self.assertEqual(universe.OmegaDarkEnergy(redshift=zz), testUniverse.Ode(zz)) self.assertEqual(universe.OmegaPhotons(redshift=zz), testUniverse.Ogamma(zz)) self.assertEqual(universe.OmegaNeutrinos(redshift=zz), testUniverse.Onu(zz)) self.assertEqual(universe.OmegaCurvature(redshift=zz), testUniverse.Ok(zz))
lsst.utils.tests.init() unittest.main() |