Coverage for tests/test_assessSpatialKernelVisitor.py : 21%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# Increase the number for more verbose messages; decrease for fewer messages
self.config = ipDiffim.ImagePsfMatchTask.ConfigClass() self.config.kernel.name = "AL" self.subconfig = self.config.kernel.active
self.policy = pexConfig.makePolicy(self.subconfig) self.kList = ipDiffim.makeKernelBasisList(self.subconfig)
self.ksize = self.policy.get('kernelSize')
basicGaussian1 = afwMath.GaussianFunction2D(2., 2., 0.) basicKernel1 = afwMath.AnalyticKernel(self.ksize, self.ksize, basicGaussian1)
basicGaussian2 = afwMath.GaussianFunction2D(5., 3., 0.5 * num.pi) basicKernel2 = afwMath.AnalyticKernel(self.ksize, self.ksize, basicGaussian2)
basisList = [] basisList.append(basicKernel1) basisList.append(basicKernel2) basisList = ipDiffim.renormalizeKernelList(basisList)
spatialKernelFunction = afwMath.PolynomialFunction2D(order) spatialKernel = afwMath.LinearCombinationKernel(basisList, spatialKernelFunction) kCoeffs = [[0.0 for x in range(1, spatialKernelFunction.getNParameters()+1)], [0.01 * x for x in range(1, spatialKernelFunction.getNParameters()+1)]] kCoeffs[0][0] = 1.0 # it does not vary spatially; constant across image spatialKernel.setSpatialParameters(kCoeffs) return spatialKernel
del self.policy del self.kList
ti = afwImage.MaskedImageF(afwGeom.Extent2I(100, 100)) ti.getVariance().set(0.1) ti[50, 50, afwImage.LOCAL] = (1., 0x0, 1.) sKernel = self.makeSpatialKernel(2) si = afwImage.MaskedImageF(ti.getDimensions()) afwMath.convolve(si, ti, sKernel, True)
bbox = afwGeom.Box2I(afwGeom.Point2I(25, 25), afwGeom.Point2I(75, 75)) si = afwImage.MaskedImageF(si, bbox, origin=afwImage.LOCAL) ti = afwImage.MaskedImageF(ti, bbox, origin=afwImage.LOCAL) kc = ipDiffim.KernelCandidateF(50., 50., ti, si, self.policy)
sBg = afwMath.PolynomialFunction2D(1) bgCoeffs = [0., 0., 0.] sBg.setParameters(bgCoeffs)
# must be initialized bskv = ipDiffim.BuildSingleKernelVisitorF(self.kList, self.policy) bskv.processCandidate(kc) self.assertEqual(kc.isInitialized(), True)
askv = ipDiffim.AssessSpatialKernelVisitorF(sKernel, sBg, self.policy) askv.processCandidate(kc)
self.assertEqual(askv.getNProcessed(), 1) self.assertEqual(askv.getNRejected(), 0) self.assertEqual(kc.getStatus(), afwMath.SpatialCellCandidate.GOOD)
ti = afwImage.MaskedImageF(afwGeom.Extent2I(100, 100)) ti.getVariance().set(0.1) ti[50, 50, afwImage.LOCAL] = (1., 0x0, 1.) sKernel = self.makeSpatialKernel(2) si = afwImage.MaskedImageF(ti.getDimensions()) afwMath.convolve(si, ti, sKernel, True)
bbox = afwGeom.Box2I(afwGeom.Point2I(25, 25), afwGeom.Point2I(75, 75)) si = afwImage.MaskedImageF(si, bbox, origin=afwImage.LOCAL) ti = afwImage.MaskedImageF(ti, bbox, origin=afwImage.LOCAL) kc = ipDiffim.KernelCandidateF(50., 50., ti, si, self.policy)
badGaussian = afwMath.GaussianFunction2D(1., 1., 0.) badKernel = afwMath.AnalyticKernel(self.ksize, self.ksize, badGaussian) basisList = [] basisList.append(badKernel) badSpatialKernelFunction = afwMath.PolynomialFunction2D(0) badSpatialKernel = afwMath.LinearCombinationKernel(basisList, badSpatialKernelFunction) badSpatialKernel.setSpatialParameters([[1, ]])
sBg = afwMath.PolynomialFunction2D(1) bgCoeffs = [10., 10., 10.] sBg.setParameters(bgCoeffs)
# must be initialized bskv = ipDiffim.BuildSingleKernelVisitorF(self.kList, self.policy) bskv.processCandidate(kc) self.assertEqual(kc.isInitialized(), True)
askv = ipDiffim.AssessSpatialKernelVisitorF(badSpatialKernel, sBg, self.policy) askv.processCandidate(kc)
self.assertEqual(askv.getNProcessed(), 1) self.assertEqual(askv.getNRejected(), 1) self.assertEqual(kc.getStatus(), afwMath.SpatialCellCandidate.BAD)
#####
lsst.utils.tests.init()
lsst.utils.tests.init() unittest.main() |